In mathematics, a topos (, ; plural topoi or , or toposes) is a category that behaves like the category of sheaves of sets on a topological space (or more generally, on a site). Topoi behave much like the category of sets and possess a notion of localization. The Grothendieck topoi find applications in algebraic geometry, and more general elementary topoi are used in logic.
The mathematical field that studies topoi is called topos theory.
Here denotes the category of contravariant functors from to the category of sets; such a contravariant functor is frequently called a presheaf.
The last axiom needs the most explanation. If X is an object of C, an "equivalence relation" R on X is a map R → X × X in C such that for any object Y in C, the induced map Hom( Y, R) → Hom( Y, X) × Hom( Y, X) gives an ordinary equivalence relation on the set Hom( Y, X). Since C has colimits we may form the coequalizer of the two maps R → X; call this X/ R. The equivalence relation is "effective" if the canonical map
is an isomorphism.
Similarly, there is a topos for any group which is equivalent to the category of -sets. We construct this as the category of presheaves on the category with one object, but now the set of morphisms is given by the group . Since any functor must give a -action on the target, this gives the category of -sets. Similarly, for a groupoid the category of presheaves on gives a collection of sets indexed by the set of objects in , and the automorphisms of an object in has an action on the target of the functor.
To a scheme and even a stack one may associate an étale topos, an Flat topology topos, or a Nisnevich topos. Another important example of a topos is from the crystalline site. In the case of the étale topos, these form the foundational objects of study in anabelian geometry, which studies objects in algebraic geometry that are determined entirely by the structure of their étale fundamental group.
By Freyd's adjoint functor theorem, to give a geometric morphism X → Y is to give a functor u∗: Y → X that preserves finite limits and all small colimits. Thus geometric morphisms between topoi may be seen as analogues of maps of locales.
If and are topological spaces and is a continuous map between them, then the pullback and pushforward operations on sheaves yield a geometric morphism between the associated topoi for the sites .
If X is an ordinary space and x is a point of X, then the functor that takes a sheaf F to its stalk Fx has a right adjoint (the "skyscraper sheaf" functor), so an ordinary point of X also determines a topos-theoretic point. These may be constructed as the pullback-pushforward along the continuous map x: 1 → X.
For the etale topos of a space , a point is a bit more refined of an object. Given a point of the underlying scheme a point of the topos is then given by a separable field extension of such that the associated map factors through the original point . Then, the factorization map is an etale morphism of schemes.
More precisely, those are the global points. They are not adequate in themselves for displaying the space-like aspect of a topos, because a non-trivial topos may fail to have any. Generalized points are geometric morphisms from a topos Y (the stage of definition) to X. There are enough of these to display the space-like aspect. For example, if X is the classifying topos S T for a geometric theory T, then the universal property says that its points are the models of T (in any stage of definition Y).
Another important class of ringed topoi, besides ringed spaces, are the étale topoi of algebraic stack.
It is also possible to encode an algebraic theory, such as the theory of groups, as a topos, in the form of a classifying topos. The individual models of the theory, i.e. the groups in our example, then correspond to from the encoding topos to the category of sets that respect the topos structure.
A topos is a category that has the following two properties:
Formally, a power object of an object is a pair with , which classifies relations, in the following sense. First note that for every object , a morphism ("a family of subsets") induces a subobject . Formally, this is defined by pulling back along . The universal property of a power object is that every relation arises in this way, giving a bijective correspondence between relations and morphisms .
From finite limits and power objects one can derive that
In some applications, the role of the subobject classifier is pivotal, whereas power objects are not. Thus some definitions reverse the roles of what is defined and what is derived.
In a topos "subobject" becomes, at least implicitly, a first-order notion, as follows.
As noted above, a topos is a category C having all finite limits and hence in particular the empty limit or final object 1. It is then natural to treat morphisms of the form x: 1 → X as elements x ∈ X. Morphisms f: X → Y thus correspond to functions mapping each element x ∈ X to the element fx ∈ Y, with application realized by composition.
One might then think to define a subobject of X as an equivalence class of monics m: X′ → X having the same image { mx | x ∈ X′ }. The catch is that two or more morphisms may correspond to the same function, that is, we cannot assume that C is concrete in the sense that the functor C(1,-): C → Set is faithful. For example the category Grph of multidigraph and their associated is a topos whose final object 1 is the graph with one vertex and one edge (a self-loop), but is not concrete because the elements 1 → G of a graph G correspond only to the self-loops and not the other edges, nor the vertices without self-loops. Whereas the second-order definition makes G and the subgraph of all self-loops of G (with their vertices) distinct subobjects of G (unless every edge is, and every vertex has, a self-loop), this image-based one does not. This can be addressed for the graph example and related examples via the Yoneda Lemma as described in the Further examples section below, but this then ceases to be first-order. Topoi provide a more abstract, general, and first-order solution.
noted above, a topos C has a subobject classifier Ω, namely an object of C with an element t ∈ Ω, the generic subobject of C, having the property that every monomorphism m: X′ → X arises as a pullback of the generic subobject along a unique morphism f: X → Ω, as per Figure 1. Now the pullback of a monic is a monic, and all elements including t are monics since there is only one morphism to 1 from any given object, whence the pullback of t along f: X → Ω is a monic. The monics to X are therefore in bijection with the pullbacks of t along morphisms from X to Ω. The latter morphisms partition the monics into equivalence classes each determined by a morphism f: X → Ω, the characteristic morphism of that class, which we take to be the subobject of X characterized or named by f.
All this applies to any topos, whether or not concrete. In the concrete case, namely C(1,-) faithful, for example the category of sets, the situation reduces to the familiar behavior of functions. Here the monics m: X′ → X are exactly the injections (one-one functions) from X′ to X, and those with a given image { mx | x ∈ X′ } constitute the subobject of X corresponding to the morphism f: X → Ω for which f−1( t) is that image. The monics of a subobject will in general have many domains, all of which however will be in bijection with each other.
To summarize, this first-order notion of subobject classifier implicitly defines for a topos the same equivalence relation on monics to X as had previously been defined explicitly by the second-order notion of subobject for any category. The notion of equivalence relation on a class of morphisms is itself intrinsically second-order, which the definition of topos neatly sidesteps by explicitly defining only the notion of subobject classifier Ω, leaving the notion of subobject of X as an implicit consequence characterized (and hence namable) by its associated morphism f: X → Ω.
The categories of finite sets, of finite G-sets (Group action G on a finite set), and of finite graphs are elementary topoi that are not Grothendieck topoi.
If C is a small category, then the functor category Set C (consisting of all covariant functors from C to sets, with natural transformations as morphisms) is a topos. For instance, the category Grph of graphs of the kind permitting multiple directed edges between two vertices is a topos. Such a graph consists of two sets, an edge set and a vertex set, and two functions s,t between those sets, assigning to every edge e its source s( e) and target t( e). Grph is thus equivalent to the functor category Set C, where C is the category with two objects E and V and two morphisms s,t: E → V giving respectively the source and target of each edge.
The Yoneda lemma asserts that Cop embeds in Set C as a full subcategory. In the graph example the embedding represents Cop as the subcategory of Set C whose two objects are V' as the one-vertex no-edge graph and E' as the two-vertex one-edge graph (both as functors), and whose two nonidentity morphisms are the two graph homomorphisms from V' to E' (both as natural transformations). The natural transformations from V' to an arbitrary graph (functor) G constitute the vertices of G while those from E' to G constitute its edges. Although Set C, which we can identify with Grph, is not made concrete by either V' or E' alone, the functor U: Grph → Set2 sending object G to the pair of sets ( Grph( V' , G), Grph( E' , G)) and morphism h: G → H to the pair of functions ( Grph( V' , h), Grph( E' , h)) is faithful. That is, a morphism of graphs can be understood as a pair of functions, one mapping the vertices and the other the edges, with application still realized as composition but now with multiple sorts of generalized elements. This shows that the traditional concept of a concrete category as one whose objects have an underlying set can be generalized to cater for a wider range of topoi by allowing an object to have multiple underlying sets, that is, to be multisorted.
The category of Pointed set with point-preserving functions is not a topos, since it doesn't have power objects: if were the power object of the pointed set , and denotes the pointed singleton, then there is only one point-preserving function , but the relations in are as numerous as the pointed subsets of . The category of abelian groups is also not a topos, for a similar reason: every group homomorphism must map 0 to 0.
The following texts are easy-paced introductions to toposes and the basics of category theory. They should be suitable for those knowing little mathematical logic and set theory, even non-mathematicians.
|
|